Polynomial-Time Solution of Initial Value Problems Using Polynomial Enclosures

نویسنده

  • Amin Farjudian
چکیده

Domain theory has been used with great success in providing a semantic framework for Turing computability, over both discrete and continuous spaces. On the other hand, classical approximation theory provides a rich set of tools for computations over real functions with (mainly) polynomial and rational function approximations. We present a semantic model for computations over real functions based on polynomial enclosures. As an important case study, we analyse the convergence and complexity of Picard’s method of initial value problem solving in our framework. We obtain a geometric rate of convergence over Lipschitz fields and then, by using Chebyshev truncations, we modify Picard’s algorithm into one which runs in polynomial-time over a set of polynomial-space representable fields, thus achieving a reduction in complexity which would be impossible in the step-function based domain models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NON-POLYNOMIAL QUARTIC SPLINE SOLUTION OF BOUNDARY-VALUE PROBLEM

Quartic non-polynomial spline function approximation in off step points is developed, for the solution of fourth-order boundary value problems. Using consistency relation of such spline and suitable choice of parameter,we have obtained second, fourth and sixth orders methods. Convergence analysis of sixth order method has been given. The methods are illustrated by some examples, to verify the or...

متن کامل

NON-POLYNOMIAL SPLINE FOR THE NUMERICAL SOLUTION OF PROBLEMS IN CALCULUS OF VARIATIONS

A Class of new methods based on a septic non-polynomial spline function for the numerical solution of problems in calculus of variations is presented. The local truncation errors and the methods of order 2th, 4th, 6th, 8th, 10th, and 12th, are obtained. The inverse of some band matrixes are obtained which are required in proving the convergence analysis of the presented method. Convergence anal...

متن کامل

Parallelizing Assignment Problem with DNA Strands

Background:Many problems of combinatorial optimization, which are solvable only in exponential time, are known to be Non-Deterministic Polynomial hard (NP-hard). With the advent of parallel machines, new opportunities have been emerged to develop the effective solutions for NP-hard problems. However, solving these problems in polynomial time needs massive parallel machines and ...

متن کامل

Global optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory

Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...

متن کامل

A novel technique for a class of singular boundary value problems

In this paper, Lagrange interpolation in Chebyshev-Gauss-Lobatto nodes is used to develop a procedure for finding discrete and continuous approximate solutions of a singular boundary value problem. At first, a continuous time optimization problem related to the original singular boundary value problem is proposed. Then, using the Chebyshev- Gauss-Lobatto nodes, we convert the continuous time op...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012